Что можно делать и какие работы на рождество

что можно делать и какие работы на рождество

Метод 1 Вычисление площади правильного многоугольника по апофеме

  1. Изображение с названием Calculate the Area of a Polygon Step 1

    1

    Формула для нахождения площади правильного многоугольника: Площадь = 1/2 х периметр х апофема.
    • Периметр – сумма сторон многоугольника.
    • Апофема – отрезок, соединяющий центр многоугольника и середину любой из его сторон (апофема перпендикулярна стороне).
  2. Изображение с названием Calculate the Area of a Polygon Step 2

    2

    Найдите апофему. Она, как правило, дана в условии задачи. Например, дан шестиугольник, апофема которого равна 10√3.

  3. Изображение с названием Calculate the Area of a Polygon Step 3

    3

    Найдите периметр. Если периметр не дан в условии задачи, то его можно найти по известной апофеме.
    • Шестиугольник можно разбить на 6 равносторонних треугольников. Апофема делит одну сторону пополам, создавая прямоугольный треугольник с углами 30-60-90 градусов.
    • В прямоугольном треугольнике сторона, противолежащая углу в 60 градусов, равна x√3; углу в 30 градусов равна «х»; углу 90 градусов равна 2x. Если значение стороны x√3 равно 10√3, то х = 10.
    • «х» – это половина длины основания треугольника. Удвойте ее и найдете полную длину основания. В нашем примере основание треугольника равно 20 единицам. В свою очередь основание треугольника есть сторона шестиугольника. Таким образом, периметр шестиугольника равен 20 х 6 = 120.
  4. Изображение с названием Calculate the Area of a Polygon Step 4

    4

    Подставьте значения апофемы и периметра в формулу. В нашем примере:
    • площадь = 1/2 х 120 х 10√3
    • площадь = 60 х 10√3
    • площадь = 600√3
  5. Изображение с названием Calculate the Area of a Polygon Step 5

    5

    Упростите ответ. Возможно, вам придется записать ответ в виде десятичной дроби (то есть избавиться от корня). С помощью калькулятора найдите √3 и полученное число умножьте на 600: √3 х 600 = 1039,2. Это ваш окончательный ответ.

Метод 2 Вычисление площади правильного многоугольника по другим формулам

  1. Изображение с названием Calculate the Area of a Polygon Step 6

    1

    Найдите площадь треугольника. Формула: Площадь = 1/2 х основание х высота.
    • Если вам дан треугольник с основанием 10 и высотой 8, то его площадь = 1/2 х 8 х 10 = 40.
  2. Изображение с названием Calculate the Area of a Polygon Step 7

    2

    Найдите площадь квадрата. Чтобы найти площадь квадрата, просто возведите в квадрат длину одной его стороны. Если умножить основание квадрата на его высоту, мы получим тот же ответ, так как основание и высота равны.
    • Если сторона квадрата равна 6, то его площадь = 6 х 6 = 36.
  3. Изображение с названием Calculate the Area of a Polygon Step 8

    3

    Найдите площадь прямоугольника. Формула: Площадь = длина х ширина.
    • Если длина прямоугольника равна 4, а ширина равна 3, то его площадь = 4 х 3 = 12.
  4. Изображение с названием Calculate the Area of a Polygon Step 9

    4

    Найдите площадь трапеции. Формула: Площадь = [(основание1 + основание2) х высота] / 2.
    • Например, дана трапеция с основаниями 6 и 8 и высотой 10. Ее площадь = [(6 + 8)•10]/2 = (14 х 10)/2 = 140/2 = 70.

Метод 3 Вычисление площади неправильного многоугольника

  1. Изображение с названием Calculate the Area of a Polygon Step 10

    1

    Используйте координаты вершин неправильного многоугольника. Зная координаты вершин, можно определить площадь неправильного многоугольника.

  2. Изображение с названием Calculate the Area of a Polygon Step 11

    2

    Сделайте таблицу. Запишите координаты вершин (х,у) (вершины выбирать последовательно в направлении против часовой стрелки). В конце списка еще раз напишите координату первой вершины.

  3. Изображение с названием Calculate the Area of a Polygon Step 12

    3

    Умножьте значение координаты «х» первой вершины на значение координаты «у» второй вершины (и так далее). Сложите результаты (в нашем примере сумма равна 82).

  4. Изображение с названием Calculate the Area of a Polygon Step 13

    4

    Умножьте значение координаты «у» первый вершины на значение координаты «х» второй вершины (и так далее). Сложите результаты (в нашем примере сумма равна -38).

  5. Изображение с названием Calculate the Area of a Polygon Step 14

    5

    Вычтите сумму, полученную в шаге 4, из суммы, полученной в шаге 3. В нашем примере: (82) - (-38) = 120.

  6. Изображение с названием Calculate the Area of a Polygon Step 15

    6

    Разделите полученный результат на 2, чтобы найти площадь многоугольника: S=120/2 = 60 (квадратных единиц).

Советы

  • Если вы записываете координаты вершин в направлении по часовой стрелке, вы получите отрицательную площадь. Таким образом, это можно использовать для описания цикла или последовательности данного набора вершин, формирующих многоугольник.
  • Данная формула находит площадь с учетом формы многоугольника. Если многоугольник имеет форму цифры 8, то необходимо из площади с вершинами против часовой стрелки вычесть площадь с вершинами по часовой стрелке.

Похожие статьи

  • Как найти площадь четырехугольника
  • Как вычислить расстояние до молнии
  • Как находить проценты
  • Как вычислить возраст с помощью шоколада
  • Как найти площадь правильного многоугольника

Источники и ссылки

Эту страницу просматривали 215 179 раза.

Была ли эта статья полезной?

 

Что можно делать и какие работы на рождество

Метод 1 Вычисление площади правильного многоугольника по апофеме

  1. Изображение с названием Calculate the Area of a Polygon Step 1

    1

    что можно делать и какие работы на рождество
    Формула для нахождения площади правильного многоугольника: Площадь = 1/2 х периметр х апофема.
    • Периметр – сумма сторон многоугольника.
    • Апофема – отрезок, соединяющий центр многоугольника и середину любой из его сторон (апофема перпендикулярна стороне).
  2. Изображение с названием Calculate the Area of a Polygon Step 2

    2

    Найдите апофему. Она, как правило, дана в условии задачи. Например, дан шестиугольник, апофема которого равна 10√3.

  3. Изображение с названием Calculate the Area of a Polygon Step 3

    3

    Найдите периметр. Если периметр не дан в условии задачи, то его можно найти по известной апофеме.
    • Шестиугольник можно разбить на 6 равносторонних треугольников. Апофема делит одну сторону пополам, создавая прямоугольный треугольник с углами 30-60-90 градусов.
    • В прямоугольном треугольнике сторона, противолежащая углу в 60 градусов, равна x√3; углу в 30 градусов равна «х»; углу 90 градусов равна 2x. Если значение стороны x√3 равно 10√3, то х = 10.
    • «х» – это половина длины основания треугольника. Удвойте ее и найдете полную длину основания. В нашем примере основание треугольника равно 20 единицам. В свою очередь основание треугольника есть сторона шестиугольника. Таким образом, периметр шестиугольника равен 20 х 6 = 120.
  4. Изображение с названием Calculate the Area of a Polygon Step 4

    4

    Подставьте значения апофемы и периметра в формулу. В нашем примере:
    • площадь = 1/2 х 120 х 10√3
    • площадь = 60 х 10√3
    • площадь = 600√3
  5. Изображение с названием Calculate the Area of a Polygon Step 5

    5

    Упростите ответ. Возможно, вам придется записать ответ в виде десятичной дроби (то есть избавиться от корня). С помощью калькулятора найдите √3 и полученное число умножьте на 600: √3 х 600 = 1039,2. Это ваш окончательный ответ.

Метод 2 Вычисление площади правильного многоугольника по другим формулам

  1. Изображение с названием Calculate the Area of a Polygon Step 6

    1

    Найдите площадь треугольника. Формула: Площадь = 1/2 х основание х высота.
    • Если вам дан треугольник с основанием 10 и высотой 8, то его площадь = 1/2 х 8 х 10 = 40.
  2. Изображение с названием Calculate the Area of a Polygon Step 7

    2

    Найдите площадь квадрата. Чтобы найти площадь квадрата, просто возведите в квадрат длину одной его стороны. Если умножить основание квадрата на его высоту, мы получим тот же ответ, так как основание и высота равны.
    • Если сторона квадрата равна 6, то его площадь = 6 х 6 = 36.
  3. Изображение с названием Calculate the Area of a Polygon Step 8

    3

    Найдите площадь прямоугольника. Формула: Площадь = длина х ширина.
    • Если длина прямоугольника равна 4, а ширина равна 3, то его площадь = 4 х 3 = 12.
  4. Изображение с названием Calculate the Area of a Polygon Step 9

    4

    Найдите площадь трапеции. Формула: Площадь = [(основание1 + основание2) х высота] / 2.
    • Например, дана трапеция с основаниями 6 и 8 и высотой 10. Ее площадь = [(6 + 8)•10]/2 = (14 х 10)/2 = 140/2 = 70.

Метод 3 Вычисление площади неправильного многоугольника

  1. Изображение с названием Calculate the Area of a Polygon Step 10

    1

    Используйте координаты вершин неправильного многоугольника. Зная координаты вершин, можно определить площадь неправильного многоугольника.

  2. Изображение с названием Calculate the Area of a Polygon Step 11

    2

    Сделайте таблицу. Запишите координаты вершин (х,у) (вершины выбирать последовательно в направлении против часовой стрелки). В конце списка еще раз напишите координату первой вершины.

  3. Изображение с названием Calculate the Area of a Polygon Step 12

    3

    Умножьте значение координаты «х» первой вершины на значение координаты «у» второй вершины (и так далее). Сложите результаты (в нашем примере сумма равна 82).

  4. Изображение с названием Calculate the Area of a Polygon Step 13

    4

    Умножьте значение координаты «у» первый вершины на значение координаты «х» второй вершины (и так далее). Сложите результаты (в нашем примере сумма равна -38).

  5. Изображение с названием Calculate the Area of a Polygon Step 14

    5

    Вычтите сумму, полученную в шаге 4, из суммы, полученной в шаге 3. В нашем примере: (82) - (-38) = 120.

  6. Изображение с названием Calculate the Area of a Polygon Step 15

    6

    Разделите полученный результат на 2, чтобы найти площадь многоугольника: S=120/2 = 60 (квадратных единиц).

Советы

  • Если вы записываете координаты вершин в направлении по часовой стрелке, вы получите отрицательную площадь. Таким образом, это можно использовать для описания цикла или последовательности данного набора вершин, формирующих многоугольник.
  • Данная формула находит площадь с учетом формы многоугольника. Если многоугольник имеет форму цифры 8, то необходимо из площади с вершинами против часовой стрелки вычесть площадь с вершинами по часовой стрелке.

Похожие статьи

  • Как найти площадь четырехугольника
  • Как вычислить расстояние до молнии
  • Как находить проценты
  • Как вычислить возраст с помощью шоколада
  • Как найти площадь правильного многоугольника

Источники и ссылки

Эту страницу просматривали 215 179 раза.

Была ли эта статья полезной?

 

Почему любят но не могут быть вместе

Будущие мамочки сталкиваются со множеством запретов. Все окружающие: и врач, и родственники, и более опытные мамы стараются рассказать счастливицам, что нельзя и вредно для беременных. Запреты бывают и вполне логичными и откровенно бредовыми. Давайте попробуем разобраться, что действительно нельзя или нежелательно для женщин.

Что можно делать и какие работы на рождество

Земли сельхозназначения: что на них можно делать?

Что можно делать и какие работы на рождество

Как и в какие акции вложить деньги - для новичков. Где и

Что можно делать и какие работы на рождество

Стаж и пенсия не работая. Как законно заработать

Что можно делать и какие работы на рождество

Какие лекарства можно использовать для

Что можно делать и какие работы на рождество

Что нельзя беременным есть и делать; какие

Что можно делать и какие работы на рождество

Первая кадровая справочная система Система

Что можно делать и какие работы на рождество

Праздники

Что можно делать и какие работы на рождество

Bukkit по-русски - свой сервер Minecraft

Что можно делать и какие работы на рождество

Cached

Что можно делать и какие работы на рождество

Альбом в Apple Music: Что Нам Делать В Греции (Влади)

Что можно делать и какие работы на рождество

Антивирус NOD блокирует доступ в Интернет

Что можно делать и какие работы на рождество

Если сняться умершие, что делать? Вопросы священнику