Узнать по номеру автомобиля телефон

узнать по номеру автомобиля телефон

1.  Методы измерений.

2.  Погрешности измерений.

3.  Выбор метода и средств измерений.

4.  Выбор измерений.

1.  Методы измерений. Измерение физической величины может быть осуществлено различными методами (способами), выбор которых в каждом отдельном случае зависит от характера измеряемой величины, от условий измерения, от устройства и принципа действий измеряемой аппаратуры, а также требуемой точности.

По способу получения числового значения измеряемой величины методы измерения делят на 3 вида:

1. Прямые

2. Косвенные

3. Совокупные

Они различаются по характеру использования мер.

К наиболее важным методам, прямых измерений постоянно встречающихся на практике, относятся следующие:

1. Метод непосредственной оценки.

2. Метод сравнения, состоящий из четырех разновидностей:

а) нулевой метод;

б) дифференциальный метод;

в) метод замещения;

г) метод совпадения.

Сущность метода непосредственной оценки Состоит в том, о значение измеряемой величины судят по показанию одного или нескольких приборов прямого преобразования, заранее проградуированных в единицах измеряемой величины или в единицах других величин, от которых зависит измеряемое. Он принадлежит к числу наиболее распространенных в технической практике (в силу своей простоты), и типичным его примером служит измерение электрических величин стрелочными приборами. Точность этого метода обычно ограничивается точностью измерительных приборов. Отличительной особенностью этого метода является то, что мера непосредственного участия в процессе измерения не принимает.

Сущностью метода сравнения является то, что при использовании этих методов измеряемая величина в процессе измерения сравнивается с величиной, воспроизводимой мерой.

Таким образом, отличительной чертой методов сравнения является непосредственное участие меры в процессе измерения. Они различаются по характеру использования мер.

А) Нулевой метод – это метод, при котором результатирующий эффект воздействия измеряемой величины и образцовой меры на прибор сравнения (нулевой индикатор) доводится до нуля. Примерами использования нулевых методов в электротехнике являются мостовые и компенсационные схемы. Нулевые методы значительно сложнее методов непосредственной оценки, требуют значительно большего времени, но зато точность их несравненно выше (0,02% и выше).

Нулевые методы применяются в основном при проверке приборов используемых непосредственной оценке.

Б) Дифференциальный метод – это метод, при котором непосредственно оценивается измерительными приборами разность между измеряемой величиной и образцово мерой или разность производимых ими эффектов.

Аиз-А=а

Аиз – измеряемая величина; А – показание прибора; а – погрешность.

Зная А и измерив а, можно найти Аиз. Точность этого метода тем выше, чем меньше измеряемая разность и с тем большей точностью она измерена (если разность между Аиз и А составляет 1% и измерено с точностью до 1%, то точность измерения составит уже 0,01%).

Дифференциальные методы используются при точных лабораторных измерениях (поверка образцовых сопротивлений, поверка измерительных трансформаторов и др.).

В) Метод замещения. Этот метод заключается в том, что в процессе измерения измеряемая величина Аиз заменяется в измерительной установки известной величиной А, при чем путем измерения величины А, измерительная установка приводится в прежнее состояние, то есть достигаются те же показания приборов, что и при действии величины Аиз. При таких условиях Аиз=.

Г) Метод совпадения. Этот метод заключается в том, что измеряют разность между искомой величиной и образцовой мерой, используя совпадения меток шкал или периодических сигналов. Сущность этого метода можно пояснить на примере определения размера дюйма.

 

1дюйм= 127/5=254/10=25,4мм

Погрешности измерений.

 

При осуществлении измерений, вследствие ряда причин, числовое значение измеряемой величины, полученная в результате опыта, является лишь более менее приближенным.

Отклонение результатов измерения от истинного значения измеряемой величины называется Погрешностью измерения.

Верным (истинным) значением Изменяемой величины называют ее значение, свободное от погрешностей измерений.

Действительное значение – это значение, полученное в результате измерения с допустимой погрешностью (ошибкой).

Погрешности измерений можно классифицировать по ряду признаков:

1.  По способу числового выражения погрешности измерений делятся на:

А) Абсолютные и б) относительные.

Абсолютной погрешностью Называется разность между измеренным и действительным значением измеряемой величины.

А=Аиз-Аq

За действительные значения измеряемой величины принимаются показания образцового прибора.

Абсолютная погрешность измеряется в единицах измеряемой величины.

Величина обратная по знаку абсолютной погрешности называется поправкой.

σ =-ΔА

Относительной погрешностью Называется отношение абсолютной погрешности к действительному значению измеряемой величины.

β = ΔА/АД = Аиз – Ад/Ад; или β = ΔА/Ад·100%.

2.  По характеру изменения Погрешности измерений делятся на:

А) систематические;

Б) случайные;

В) грубые ошибки (промахи).

Систематическими Называются погрешности, подчиняющие определенному закону или остающиеся в

Процессе измерения постоянными. К ним относятся погрешности, обусловленные неточностью осуществления меры, неправильностью градуировок измерительного прибора, влиянием температуры окружающей среды на меры и измерительные приборы.

Различают следующие разновидности систематических погрешностей:

1.  Инструментальные.

2.  Погрешности установки прибора.

3.  Личные погрешности (субъективные).

4.  Погрешности метода (или теоретические).

В зависимости от изменения во времени систематические погрешности делятся на: а) постоянные; б) прогрессивные; в) периодические.

Для учета и исключения систематических погрешностей необходимо располагать, возможно, полными данными о наличии отдельных видов погрешностей и о причинах их возникновения.

Систематические погрешности могут быть исключены или значительно уменьшены устранением источников погрешностей или введением поправок, останавливаемых на основании предварительного изучения погрешностей, путем поверки мер и приборов, используемых при измерении, введением поправочных формул и кривых, выражающих зависимость показаний приборов от внешних условий.

Случайными Называются погрешности, изменение которых не подчиняется какой-либо закономерности. Они обнаруживаются при многократном измерении искомой величины, когда повторные измерения проводятся одинаково тщательно и, казалось бы, при одних и тех же условиях.

Случайные погрешности нельзя исключить опытным путем, но их влияние на результат измерения может быть теоретически учтено путем применения при обработке результатов измерений методов теории вероятности и математической статистики.

Грубые ошибки – это погрешности, существенно превышающие ожидаемые при данных условиях. Примером грубых ошибок могут быть неправильные отсчеты показаний средств измерений. Грубые погрешности измерения выявляются при повторных измерения и должны быть отброшены, как на заслуживающие доверия.

Общие методы повышентя точностсти средств измерений.

 

Стремясь к созданию более точных средств измерений измерительная тезника выработала ряд общих методов достижения точности, которые можно подразделить на четыре группы:

1. Стабилизация важнейших параметров средств измерений технологическим путем, т. е. путем использования наиболее стабильных деталей, материалов и соответствующей технологии изготовления.

2. Метод пассивной защиты от быстро изменяющихся влияющих величин, т. е. уменьшение случайных погрешностей средств измерений путем применения фильтрации, амортизации, теплоизоляции и т. д.

3. Методы активной защиты от медленно изменяющихся влиящих величин путем стабилизации этих величин.

4. Методы коррекции систематических и прогрессирующих погрешностей и статическая обработка случайных погрешностей.

Повышение точности измерений обычно связано с усложнением аппаратуры и увеличением времени

(большая повторность) измерения. А это не всегда оравдано. Очевидно также нецелесообразность особой точности измерения величин, мало влияющих на числовое значение общего конечного результата.

Так, например, при измерении величин x1, x2 и х3 для определения величины у=х12х2βх3γ вряд ли целесообразно добиваться особой точности измерения х1, если показателем степени α =1, β = 2, γ = 3.

Требуемеая точность должна соответствовать задачам и условиям измерений.

Выбор метода и средств измерений.

 

При выборе метода измерений следует руководствоваться требуемой точностью результатов измерений.

По точности получаемых результатов можно разделить на три группы:

1.  Результат измерения должен иметь максимальную возможную при существующем уровне измерительной техники точность.

Такие измерения называют Точными (презиционными). Например, измерения физических констант, эталонный измерения, некоторые спеиальные измерения, относящиеся к максимально точной работе отдельных приборов.

2.  Измерения, погрешности результата которых не должена превосходить некоторого заданного значения.

Такие измерения называют Контрольно поверхностными. Они выполняются в поверочных контрольно-измерительных лабораториях такими измерительными средствами и по такой методике, чтобы гарантировать погрешность результата, не превышающую некоторого заранее заданного значения.

3.  Измерения, при которых погрешность результата определена характеристиками измерительных устройств.

Такие измерения называют Техническими.

К ним относятся и лабораторные измерения, проводимые при различного рода обработок и исследованиях, и исследованиях, и производственные, и приемно-сдаточные, и эксплутационные измерения, проводимые для обеспечения необходимого режима работы различных объектов и устройств.

Приборы для измерений выбирают по ряду показателей: роду тока, частоты, диапозону измеряемой величины, точности, входным параметрам, степени влияния внешних факторов.

1. Род тока исследуемой цепи определяет принцип действия и систему выбираемого для нее измерительного прибора. (U, I, R на постоянном токе – МЭ, Р-ЭД, точное измерение I, U, P, cosγ вольтметру – ср. Д., измерения средних, действующих значений тока и напряжения в цепях передоваемого тока звуковой и высокой частоты применяют – выпрямительные, тэрмоэлектрические, электронные и электростатические приборы. Мгновнные значения переменных величин измеряют – осцелографами).

2. Номинальная чатота или область частоты измерительного прибора или меры должна соответствовать частоте тока исследуемой цепи.

Чем сильнее отличается частота исследуемой цепи от номинальной частоты прибора или меры, тем больше погрешности измерений.

3. Номинальные пределы прибора или меры не должны превышать верхнего предела измеряемой величины более чем на 25%.

Чем сильнее они разняться, тем менее точны результаты измерений. При заданном классе точности допускается относительная погрешность прибора или меры тем больше, чем меньше измеряемая величина.

4.  Классы точности выбранного измерительного прибора или меры должны быть такими, чтобы допустимые основные погрешности были в 3 раза меньшими, чем допустимые погрешности данных измерений, т. к. предельная погрешность измерений, возможная в данных условиях, не может превысить

Утроенного значения среднеквадратичной погрешности ряда измерений.

5. В зависимости от схемы включения измерительного прибора его входное сопротивление должно быть, возможно, большим или меньшим.

Чем точнее измерения, тем большими должны быть входные сопротивления измерительных приборов включаемых параллельно, и тем меньшими они должны быть у приборов, включаемых последовательно в исследуемую цепь.

6. Выбирая нужный измерительный прибор, следует учитывать конкретные условия измерений и технические характеристики прибора.

Непосредственное влияние внешних факторов может вызвать большие погрешности приборов (температура, влажность, внешние электрические и магнитные поля, паразитные емкости). При любых условиях наиболее желательны приборы и меры, требующие минимальных средств защиты от влияния внешних факторов.

Виды измерений.

 

Прцесс измерения может осуществляться по-разному в зависимости от рода измеряемой величины и приемов измерения.

По способу получения результатов различабт следующие виды измеренй:

1.  Прямые измерения.

2.  Косвенные измерения.

3.  Совокупные измерения.

К прямым измерениям Относятся измерения, результат которых получается непосредственно из опытных данных измерения.

Прямое измерение условно можно выразить формулой Y=Х, где

Y – искомое значение измеряемой величины;

Х – значение, непосредственно получаемоеиз опытных данных.

К этому виду измерений относятся измерения различных физичских величин при помощи приборов, градуированных в установленных единицах (ток – апмерметром, температура – термометром). К этому виду измерений относятся и измерения, при которых искомое значение величины определяется непосредственным сравнением ее с мерой.

Косвенными Называется такое измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвеных измерениях числовое значение измеряемой величины определяют путем вычисления по формуле.

Y = F (X1, X2, …, Xn),

где y – искомое значение измеряемой величины;

x1, x2, …, xn – значения измеренных величин (R = U/I, P = UI – в цепях постоянного тока).

Совокупными Называются такие измерения, при коорых искомые значения величин определяются путем решения системы уравнений, связывающих значения искомых величин с непосредственно измеренными величинами, т. е. путем решения системы уравнений.

Примером этого вида измерений является определение температурных коэффициентов сопротивления:

Rt = R20 [1+α (T1-20)+β(T1-20)]

Здесь Rt и t измеряются прямым измерением, а α, β и R20 – искомые величины.

Меняя тепловой режим катушки и измеряя Rt при ряде заданных температур t1; t2 и t3, получаем систему уравнений, совместное решение которых позволяет определить числовые значения искомых величин.

Дополнительные материалы

Метки: измерительные механизмы

Узнать по номеру автомобиля телефон

1.  Методы измерений.

2.  Погрешности измерений.

3.  Выбор метода и средств измерений.

4.  Выбор измерений.

1.  Методы измерений. Измерение физической величины может быть осуществлено различными методами (способами), выбор которых в каждом отдельном случае зависит от характера измеряемой величины, от условий измерения, от устройства и принципа действий измеряемой аппаратуры, а также требуемой точности.

По способу получения числового значения измеряемой величины методы измерения делят на 3 вида:

1. Прямые

2. Косвенные

3. Совокупные

Они различаются по характеру использования мер.

К наиболее важным методам, прямых измерений постоянно встречающихся на практике, относятся следующие:

1. Метод непосредственной оценки.

2. Метод сравнения, состоящий из четырех разновидностей:

а) нулевой метод;

б) дифференциальный метод;

в) метод замещения;

г) метод совпадения.

Сущность метода непосредственной оценки Состоит в том, о значение измеряемой величины судят по показанию одного или нескольких приборов прямого преобразования, заранее проградуированных в единицах измеряемой величины или в единицах других величин, от которых зависит измеряемое. Он принадлежит к числу наиболее распространенных в технической практике (в силу своей простоты), и типичным его примером служит измерение электрических величин стрелочными приборами. Точность этого метода обычно ограничивается точностью измерительных приборов. Отличительной особенностью этого метода является то, что мера непосредственного участия в процессе измерения не принимает.

Сущностью метода сравнения является то, что при использовании этих методов измеряемая величина в процессе измерения сравнивается с величиной, воспроизводимой мерой.

Таким образом, отличительной чертой методов сравнения является непосредственное участие меры в процессе измерения. Они различаются по характеру использования мер.

А) Нулевой метод – это метод, при котором результатирующий эффект воздействия измеряемой величины и образцовой меры на прибор сравнения (нулевой индикатор) доводится до нуля. Примерами использования нулевых методов в электротехнике являются мостовые и компенсационные схемы. Нулевые методы значительно сложнее методов непосредственной оценки, требуют значительно большего времени, но зато точность их несравненно выше (0,02% и выше).

Нулевые методы применяются в основном при проверке приборов используемых непосредственной оценке.

Б) Дифференциальный метод – это метод, при котором непосредственно оценивается измерительными приборами разность между измеряемой величиной и образцово мерой или разность производимых ими эффектов.

Аиз-А=а

Аиз – измеряемая величина; А – показание прибора; а – погрешность.

Зная А и измерив а, можно найти Аиз. Точность этого метода тем выше, чем меньше измеряемая разность и с тем большей точностью она измерена (если разность между Аиз и А составляет 1% и измерено с точностью до 1%, то точность измерения составит уже 0,01%).

Дифференциальные методы используются при точных лабораторных измерениях (поверка образцовых сопротивлений, поверка измерительных трансформаторов и др.).

В) Метод замещения. Этот метод заключается в том, что в процессе измерения измеряемая величина Аиз заменяется в измерительной установки известной величиной А, при чем путем измерения величины А, измерительная установка приводится в прежнее состояние, то есть достигаются те же показания приборов, что и при действии величины Аиз. При таких условиях Аиз=.

Г) Метод совпадения. Этот метод заключается в том, что измеряют разность между искомой величиной и образцовой мерой, используя совпадения меток шкал или периодических сигналов. Сущность этого метода можно пояснить на примере определения размера дюйма.

 

1дюйм= 127/5=254/10=25,4мм

Погрешности измерений.

 

При осуществлении измерений, вследствие ряда причин, числовое значение измеряемой величины, полученная в результате опыта, является лишь более менее приближенным.

Отклонение результатов измерения от истинного значения измеряемой величины называется Погрешностью измерения.

Верным (истинным) значением Изменяемой величины называют ее значение, свободное от погрешностей измерений.

Действительное значение – это значение, полученное в результате измерения с допустимой погрешностью (ошибкой).

Погрешности измерений можно классифицировать по ряду признаков:

1.  По способу числового выражения погрешности измерений делятся на:

А) Абсолютные и б) относительные.

Абсолютной погрешностью Называется разность между измеренным и действительным значением измеряемой величины.

А=Аиз-Аq

За действительные значения измеряемой величины принимаются показания образцового прибора.

Абсолютная погрешность измеряется в единицах измеряемой величины.

Величина обратная по знаку абсолютной погрешности называется поправкой.

σ =-ΔА

Относительной погрешностью Называется отношение абсолютной погрешности к действительному значению измеряемой величины.

β = ΔА/АД = Аиз – Ад/Ад; или β = ΔА/Ад·100%.

2.  По характеру изменения Погрешности измерений делятся на:

А) систематические;

Б) случайные;

В) грубые ошибки (промахи).

Систематическими Называются погрешности, подчиняющие определенному закону или остающиеся в

Процессе измерения постоянными. К ним относятся погрешности, обусловленные неточностью осуществления меры, неправильностью градуировок измерительного прибора, влиянием температуры окружающей среды на меры и измерительные приборы.

Различают следующие разновидности систематических погрешностей:

1.  Инструментальные.

2.  Погрешности установки прибора.

3.  Личные погрешности (субъективные).

4.  Погрешности метода (или теоретические).

В зависимости от изменения во времени систематические погрешности делятся на: а) постоянные; б) прогрессивные; в) периодические.

Для учета и исключения систематических погрешностей необходимо располагать, возможно, полными данными о наличии отдельных видов погрешностей и о причинах их возникновения.

Систематические погрешности могут быть исключены или значительно уменьшены устранением источников погрешностей или введением поправок, останавливаемых на основании предварительного изучения погрешностей, путем поверки мер и приборов, используемых при измерении, введением поправочных формул и кривых, выражающих зависимость показаний приборов от внешних условий.

Случайными Называются погрешности, изменение которых не подчиняется какой-либо закономерности. Они обнаруживаются при многократном измерении искомой величины, когда повторные измерения проводятся одинаково тщательно и, казалось бы, при одних и тех же условиях.

Случайные погрешности нельзя исключить опытным путем, но их влияние на результат измерения может быть теоретически учтено путем применения при обработке результатов измерений методов теории вероятности и математической статистики.

Грубые ошибки – это погрешности, существенно превышающие ожидаемые при данных условиях. Примером грубых ошибок могут быть неправильные отсчеты показаний средств измерений. Грубые погрешности измерения выявляются при повторных измерения и должны быть отброшены, как на заслуживающие доверия.

Общие методы повышентя точностсти средств измерений.

 

Стремясь к созданию более точных средств измерений измерительная тезника выработала ряд общих методов достижения точности, которые можно подразделить на четыре группы:

1. Стабилизация важнейших параметров средств измерений технологическим путем, т. е. путем использования наиболее стабильных деталей, материалов и соответствующей технологии изготовления.

2. Метод пассивной защиты от быстро изменяющихся влияющих величин, т. е. уменьшение случайных погрешностей средств измерений путем применения фильтрации, амортизации, теплоизоляции и т. д.

3. Методы активной узнать по номеру автомобиля телефон защиты от медленно изменяющихся влиящих величин путем стабилизации этих величин.

4. Методы коррекции систематических и прогрессирующих погрешностей и статическая обработка случайных погрешностей.

Повышение точности измерений обычно связано с усложнением аппаратуры и увеличением времени

(большая повторность) измерения. А это не всегда оравдано. Очевидно также нецелесообразность особой точности измерения величин, мало влияющих на числовое значение общего конечного результата.

Так, например, при измерении величин x1, x2 и х3 для определения величины у=х12х2βх3γ вряд ли целесообразно добиваться особой точности измерения х1, если показателем степени α =1, β = 2, γ = 3.

Требуемеая точность должна соответствовать задачам и условиям измерений.

Выбор метода и средств измерений.

 

При выборе метода измерений следует руководствоваться требуемой точностью результатов измерений.

По точности получаемых результатов можно разделить на три группы:

1.  Результат измерения должен иметь максимальную возможную при существующем уровне измерительной техники точность.

Такие измерения называют Точными (презиционными). Например, измерения физических констант, эталонный измерения, некоторые спеиальные измерения, относящиеся к максимально точной работе отдельных приборов.

2.  Измерения, погрешности результата которых не должена превосходить некоторого заданного значения.

Такие измерения называют Контрольно поверхностными. Они выполняются в поверочных контрольно-измерительных лабораториях такими измерительными средствами и по такой методике, чтобы гарантировать погрешность результата, не превышающую некоторого заранее заданного значения.

3.  Измерения, при которых погрешность результата определена характеристиками измерительных устройств.

Такие измерения называют Техническими.

К ним относятся и лабораторные измерения, проводимые при различного рода обработок и исследованиях, и исследованиях, и производственные, и приемно-сдаточные, и эксплутационные измерения, проводимые для обеспечения необходимого режима работы различных объектов и устройств.

Приборы для измерений выбирают по ряду показателей: роду тока, частоты, диапозону измеряемой величины, точности, входным параметрам, степени влияния внешних факторов.

1. Род тока исследуемой цепи определяет принцип действия и систему выбираемого для нее измерительного прибора. (U, I, R на постоянном токе – МЭ, Р-ЭД, точное измерение I, U, P, cosγ вольтметру – ср. Д., измерения средних, действующих значений тока и напряжения в цепях передоваемого тока звуковой и высокой частоты применяют – выпрямительные, тэрмоэлектрические, электронные и электростатические приборы. Мгновнные значения переменных величин измеряют – осцелографами).

2. Номинальная чатота или область частоты измерительного прибора или меры должна соответствовать частоте тока исследуемой цепи.

Чем сильнее отличается частота исследуемой цепи от номинальной частоты прибора или меры, тем больше погрешности измерений.

3. Номинальные пределы прибора или меры не должны превышать верхнего предела измеряемой величины более чем на 25%.

Чем сильнее они разняться, тем менее точны результаты измерений. При заданном классе точности допускается относительная погрешность прибора или меры тем больше, чем меньше измеряемая величина.

4.  Классы точности выбранного измерительного прибора или меры должны быть такими, чтобы допустимые основные погрешности были в 3 раза меньшими, чем допустимые погрешности данных измерений, т. к. предельная погрешность измерений, возможная в данных условиях, не может превысить

Утроенного значения среднеквадратичной погрешности ряда измерений.

5. В зависимости от схемы включения измерительного прибора его входное сопротивление должно быть, возможно, большим или меньшим.

Чем точнее измерения, тем большими должны быть входные сопротивления измерительных приборов включаемых параллельно, и тем меньшими они должны быть у приборов, включаемых последовательно в исследуемую цепь.

6. Выбирая нужный измерительный прибор, следует учитывать конкретные условия измерений и технические характеристики прибора.

Непосредственное влияние внешних факторов может вызвать большие погрешности приборов (температура, влажность, внешние электрические и магнитные поля, паразитные емкости). При любых условиях наиболее желательны приборы и меры, требующие минимальных средств защиты от влияния внешних факторов.

Виды измерений.

 

Прцесс измерения может осуществляться по-разному в зависимости от рода измеряемой величины и приемов измерения.

По способу получения результатов различабт следующие виды измеренй:

1.  Прямые измерения.

2.  Косвенные измерения.

3.  Совокупные измерения.

К прямым измерениям Относятся измерения, результат которых получается непосредственно из опытных данных измерения.

Прямое измерение условно можно выразить формулой Y=Х, где

Y – искомое значение измеряемой величины;

Х – значение, непосредственно получаемоеиз опытных данных.

К этому виду измерений относятся измерения различных физичских величин при помощи приборов, градуированных в установленных единицах (ток – апмерметром, температура – термометром). К этому виду измерений относятся и измерения, при которых искомое значение величины определяется непосредственным сравнением ее с мерой.

Косвенными Называется такое измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвеных измерениях числовое значение измеряемой величины определяют путем вычисления по формуле.

Y = F (X1, X2, …, Xn),

где y – искомое значение измеряемой величины;

x1, x2, …, xn – значения измеренных величин (R = U/I, P = UI – в цепях постоянного тока).

Совокупными Называются такие измерения, при коорых искомые значения величин определяются путем решения системы уравнений, связывающих значения искомых величин с непосредственно измеренными величинами, т. е. путем решения системы уравнений.

Примером этого вида измерений является определение температурных коэффициентов сопротивления:

Rt = R20 [1+α (T1-20)+β(T1-20)]

Здесь Rt и t измеряются прямым измерением, а α, β и R20 – искомые величины.

Меняя тепловой режим катушки и измеряя Rt при ряде заданных температур t1; t2 и t3, получаем систему уравнений, совместное решение которых позволяет определить числовые значения искомых величин.

Дополнительные материалы

Метки: измерительные механизмы

Что делать если пропал номер в телефоне

Господа автолюбители! Ни для кого не секрет, что большая часть административных правонарушений в России приходится на нарушения правил дорожного движения. Сотрудники ГИБДД у многих ассоциируются исключительно с протоколами и следующими за ними штрафами и соответственно – водители хотят узнать задолженность по.

Узнать по номеру автомобиля телефон

Можно ли узнать местоположение человека по номеру телефона

Узнать по номеру автомобиля телефон

Как узнать задолженность за транспортный налог? По номеру

Узнать по номеру автомобиля телефон

Как по номеру машины узнать владельца бесплатно и онлайн

Узнать по номеру автомобиля телефон

Бухгалтерская справочная система «Система Главбух» для

Узнать по номеру автомобиля телефон

Как узнать штрафы ГИБДД онлайн: по номеру машины

Узнать по номеру автомобиля телефон

Cached

Узнать по номеру автомобиля телефон

10 самых крупных благотворительных организаций мира Гуру

Узнать по номеру автомобиля телефон

Nissan Skyline 2002, Здравствуйте интересующиеся и не очень

Узнать по номеру автомобиля телефон

Белый экран на телефоне что делать, почему, как убрать

Узнать по номеру автомобиля телефон

Благоприятные дни для стрижки волос - t

Узнать по номеру автомобиля телефон

В поисках пристанища. Что делать, если вас выгнали из дома